

Traffic Monitoring Using Solar Power

North American Travel Monitoring Exhibition and Conference

May 14, 2002

Florida Solar Energy Center

A Research Institute of the University of Central Florida

- No Power Lines
 - \$10K-\$40K / Mile
- No Generator
 - Quiet Operation
 - No Refueling
- Portable
- ◆ Reliable -When Properly Designed and Installed!

fsec What NOT to do!

Traffic Counter

SR-528 near the SR-520 exit

PV System Components

Photovoltaic Cells, Modules, Panels and Arrays

PV Module Performance Parameters I-V Curves

Typical Module Label

Siemens Solar Industries

Camarillo, CA 93011

MODEL M55 PHOTOVOLTAIC MODULE AT 1000 W/M2 SOLAR IRRADIANCE AND 25°C CELL TEMPERATURE

30B9 LISTED

MAX. POWER

53 WATTS

SHORT CKT.

3.35 A

RATED

3.05 A

MAX. SYST. OPEN CKT. V.

600 VOLTS

OPEN CKT. 21.7 V

RATED

17.4 V

FIRE RATING

CLASS C

SERIES FUSE

5 A

FIELD WIRING

BYPASS DIODE

COPPER ONLY, 14 AWG MIN. INSTALLATION GUIDE INSULATED FOR 75 C MIN.

233-701500-20

MADE IN U.S.A.

Response to Temperature

Voltage

fsec I-V Curves for Series Devices

fsec I-V Curves for Parallel Devices

Building a PV Array

Protection Diodes

- Diodes are semiconductor devices that allow current to flow in only one direction.
- The two uses of diodes in PV array design are:
 - Blocking diodes Night-time Protection
 - Bypass diodes Shading Protection

Blocking Diodes

- Placed in series with a module to prevent reverse current flow.
- Prevent discharge of batteries at night in stand-alone systems.

Bypass Diodes

Permits other parts of the array to pass current around groups of cells or modules that develop an open-circuit or high resistance condition.

Charge Controller

- Battery Voltage Regulation
- Over-charge Protection
- Low Voltage Disconnect
- Multiple settings for different battery types
- Max Power Tracking

Battery Types

- Flooded Lead-Acid
 - Can handle deep discharge
 - Requires periodic maintenance
- Valve Regulated
 - Requires proper charge control
- Ni-Cd
 - High Cost

System Design

- Location and Mounting
 - Sun Angle and Shading
 - Array Tilt Angle
- System Sizing
 - Load
 - Battery
 - PV Array

Sun Paths for 30° N Latitude

fsec Array Orientation

free Array Layout and Sun Angle

- Reduces Power Output
 - Limits Current in series connections
- Can damage cells without bypass diodes

I-V Curves for Shaded PV Devices in Series

$$V = V_A + V_B$$

 $I = I_B < I_A$

I-V Curves for Shaded PV Devices in Parallel

PV Array and Battery Sizing

- The size and configuration of a given PV array is determined by:
 - Load or desired output
 - Available solar insolation
 - Array tilt angle
 - Individual module characteristics.

Load Characteristics

- Time of Use
 - Continuous or Periodic
- Importance of operation
 - Critical Loads
- Average Power vs Peak Power
- Component Voltage requirements

Time of Use

Idle Power = 1 W

Peak Power = 3.3 W vs 10.4 W

1 Second DataTransmit every15 Minutes

FSEC Paccom Weather Station Power

Battery State of Charge

Solar Insolation - Array Tilt Orlando, Florida

Application

Best Array Tilt Angle

Maximum Annual Energy Production 90% of Latitude

Winter Peak Load

Latitude plus 15 degrees

Summer Peak Load

Latitude minus 15 degrees

Area in box = Area under curve

7.25 Peak Sun-Hours

₀Peak Sun Hours ⇒ Equivalent amount of insolation (energy) at 1000 W/m²

Example Load Calculations

- Traffic Counter
 - 24 Hour Monitoring
 - 12V Counter Circuit
- School Warning Light
 - 2 hours in the morning and afternoon
 - 24V Light

Load Calculations

- Counter:
 - 10 Watt Continuous
 - 240 Watt-hours / Day
 - 12V = 20 Amp-hours / Day
- Warning Light:
 - 60 Watts 4 Hours / Day
 - 240 Watt-hours/Day
 - 24V = 10 Amp-hours/Day

Days of Autonomy

- How long can the system run without sunlight?
 - Critical or Safety Load: 4-6 Days
 - Non-critical Load: 1-3 Days
- Counter:
 - 20 Ahrs/day * 2.5 days = 50 Ahrs
- Warning Light:
 - 10 Ahrs/day * 5 days = 50 Ahrs

fsec Battery Sizing

- ◆ 50 Ahrs = Maximum Discharge of 70%
 - 50 / 0.7 = 70 Ahr Battery
- Counter:
 - One 70 Ahr 12V Battery
- Light:
 - Two 70 Ahr 12 V Batteries in Series

- ◆ 240 Whrs / Day
- 5 Sun-hours/day = 48 Watts PV
- Add 25% for losses in battery charging
- ◆ 48W x 1.25 = 60W PV
 - Counter = Two 30W 12V modules in parallel
 - Light = Two 30 W 12V modules in series

- Location:
 - Clear view of south sky
 - Average sun-hours available
- Battery Sizing:
 - Total daily load x days of autonomy
 - Maximum depth of discharge
- PV Sizing:
 - Daily load + efficiency losses

